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Abstract— Superfluid helium is used in the cryogenic circuit
that cools down and stabilizes temperature of more than 1600
high performance, main superconducting magnets of the Large
Hadron Collider (LHC) - the new particle accelerator at Euro-
pean Organization for Nuclear Research (CERN). This paper
presents a simulation study of the application of Nonlinear
Model Predictive Control (NMPC) to the Superfluid Helium
Cryogenic Circuit. First, the new first principles, distributed
parameter model of the circuit to be used in online optimization
is reviewed. Then stabilization of the superconducting magnets
temperature using NMPC based on the model and Continua-
tion/Generalized Minimum Residual (C/GMRES) algorithm is
described. Finally the small computational cost of C/GMRES
solution/approximation method and resulting real-time feasibil-
ity are highlighted.

I. INTRODUCTION

The Large Hadron Collider (LHC) is a gigantic, 27 km cir-
cumference particle accelerator at the European Organization
for Nuclear Research (CERN). The machine has established
a world record in particle energy collision at 7 TeV in March
2010[1]. This achievement was possible due to the use of
more than 1600 superconducting magnets, producing the
very strong magnetic fields needed for guiding and focusing
of particles being accelerated[2]. The high performance of
the magnets has been achieved, despite their compact design,
by operating them at cryogenic temperatures below 2 K,
using a superfluid phase of helium 4, called He II, for cooling
and thermal stabilization. The Superfluid Helium Cryogenic
Circuit (SHCC), also known as the 1.8 K Cooling Loop, used
for cooling down and stabilizing temperature of the LHC
main superconducting magnets, was developed at CERN
based on the novel concept of He II bayonet heat exchanger
(BHX) [3]. The BHX is over 100 m long and is integrated
into eight superconducting magnets submerged into common
static bath of pressurized He II. The BHX with inner two
phase flow of saturated helium at very low pressure can be
regarded as quasi-isothermal heat sink and provides cooling
to the magnets. The BHX and the helium bath (HB) are
the main components of a 106.9 m long Standard Cell of
the SHCC. More than 200 Standard Cells are present in the
27 km circumference of the LHC: 27 in each of the eight,
3.3 km long sectors.
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The operational conditions of the cryogenic circuit are
related to the thermal conductivity of He II in the HB that
peaks at T = 1.9 K and vanishes at lambda (phase) tran-
sition temperature Tλ ≈ 2.17 K. That is why the magnet’s
temperature should be stabilized at 1.9 K and its maximal
operational value is constrained. Additional constraints are
posed on maximal mass flow rate of coolant supplied to the
BHX (because its overflow has to be limited, all helium
must evaporate inside the BHX) and helium distribution
line pumping capacity (due to the sensitivity of the cold
compressors to the change in flow).

Temperature dynamics of magnets being cooled by the
SHCC, Fig. 1, exhibits strong nonlinearities related to:
• heat transfers in He II being nonlinear function of local

temperature gradients,
• BHX cooling power distribution, affected by BHX-HB

temperature difference distribution, BHX geometry and
two phase flow dynamics of saturated He II in the BHX,

• nonlinear temperature dependence of physical proper-
ties of He II: heat capacity and superfluid heat conduc-
tivity.

Significant length of the Standard Cell together with the non-
linearities result in variable dead time of response. Moreover,
every two or three Standard Cells share common HB, thus
are very strongly thermally coupled through heat flows in
He II.

Currently the maximal temperature of LHC superconduct-
ing magnets over each Standard Cell is controlled by a
separate Proportional Integral (PI) controller. The PI must
be tunned in a conservative manner in order to obtain
satisfactory performance at various set points and heat loads
magnitudes. In order to assure that no helium overflows the
BHX, the set point for the PI must be kept well above the
BHX temperature, to keep high evaporation rate, thus must
be adjusted in presence of the BHX temperature perturba-
tions. The simulated PI performance is presented in Fig. 2.
Please note that the closed loop dynamics changes as heat
loads over two cells increase and that the thermal coupling
between two neighbor cells is so strong, that both are cooled
by one BHX - coolant mass flow rate into the other BHX is
almost zero.

Nonlinear Model Predictive Control (NMPC), if applied to
the circuit, could take into account the nonlinear system dy-
namics, couplings between cells, respect constraints related
to maximal magnet temperature and allow operating closer
to constraints posed by heat exchanger overflow. That would
result in better stabilization performance at lower tempera-
tures, thus increasing the safety margin for circuit operation.
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Fig. 1. SHCC dynamics: simulated using simplified model (bold lines)
vs. experimental (thin lines). In the upper plot, four magnet temperatures
correspond to maximal (solid line) and minimal (dotted line) value in each
of two interconnected Standard Cells.

Linear and nonlinear model based controllers developed for
versions of the SHCC used in LHC prototypes, String1 and
String2, and Inner Triplets had good performance [4], [5],
[6], [7]. Application of NMPC for 106.9 m long version of
the SHCC, used for cooling of main LHC superconducting
magnets, is currently under study. The goal is to develop
a new, first principles, distributed parameter model of the
magnet temperature dynamics and to use it to implement
NMPC for stabilization of the temperature.

This paper presents preliminary results from the study.
This section introduced the SHCC and the motivation for
the NMPC development. Next, the first principles model
of the circuit, to be used in online optimization, is re-
viewed and interesting features of the circuit dynamics are
highlighted. Stabilization of the superconducting magnets
temperature performed using NMPC based on the model and
Continuation/Generalized Minimum Residual (C/GMRES)
algorithm is then described and simulation results discussed.
Finally, the very small computational cost of C/GMRES solu-
tion/approximation method and resulting real-time feasibility
are highlighted.

II. FIRST PRINCIPLES MODEL OF THE SHCC

In the previous, first principles, simplified model of SHCC
versions used in Inner Triplet and LHC Prototypes, the distri-
bution of magnet temperatures over length of the circuit has
been neglected but the dynamics of He II mass distribution in
the BHX has been modeled. This approach performed well
for shorter versions of the cryogenic circuit, see [4], [5], [6].

The Standard Cell of the SHCC used for cooling the
main LHC magnets is a longer version of the cryogenic
circuit and is thermally coupled to its neighbor cells. That
is why, in contrast to previous model, the new simplified
model describes the temperature distribution over the circuit
length and resulting heat flows in the He II, also some to
neighbor cells. This allows simulation and optimization of
interconnected Standard Cells operation, up to whole sector

of the LHC. But the dynamics of superfluid mass distribution
in the BHX have been neglected in the new model.

The simplified model is targeted for use in online opti-
mization of the feedback control action in frame of NMPC.
In order to enable fast optimization, the model captures only
most important features of the nonlinear process dynamics
and uses approximations with continuous and smooth func-
tions where needed, thus allowing explicit evaluation of Ja-
cobians of the Hamiltonians used in optimization. Moreover,
the model provides raw prediction of BHX overflow, thus
allowing the NMPC to respect this operational constraint.

First principles approach to modeling allows good mod-
eling of non-linearities of the temperature dynamics that
originate at known circuit geometry and physical properties
of He II. He II phase transition occurs at Tλ that constrains
the model validity. However, due to approximations used, the
model validity is further limited to typical SHCC operational
magnet temperature range: 1.85 K < Tm < 2 K. The
controlled input variable in the circuit is the valve position,
regulating liquid helium mass flow rate into the BHX.
However, the relation between the two quantities contains
terms coupled with the magnet temperatures, thus the mass
flow is directly used as model input.

Some of the modeling errors appear due to simplifications
and approximations of description of physical processes
governing the circuit dynamics. For example, due to ne-
glecting the dynamics of He II in the BHX, at specific
operational conditions corresponding to low HB-BHX tem-
perature differences, helium accumulates in the BHX and
if rapid changes of cooling power occurs at this condition,
a significant error in model dynamics will be observed.
Errors are also introduced during spatial discretization of the
Distributed Parameter System. Model validation for a full
range of operational scenarios has yet not been performed.
However preliminary results are very promising, see Fig. 1.

In the following subsections some key elements of the
model are reviewed.

A. Dynamics of superconducting magnets temperature

The simplified model enables calculation of the dynamics
of 1D distributed value of superconducting magnet temper-
atures in a Standard Cell of the SHCC. The dynamics is
assumed to be equivalent to HB temperature dynamics and
is described based on energy conservation in the HB, using
q = ∂Q

∂t , L and M for for heat transfer rates, HB length and
mass respectively:

∂Tm(x, t)

∂t
= c−1

v (Tm)
L

M

(
∂qhl
∂x
− ∂qcool

∂x
− ∂qHe

∂x

)
,

(1)
for 0 < x < L and Neumann boundary conditions expressed
using function f (q) corresponding to properties of intercon-
nection between Standard Cells
∂Tm(0, t)

∂x
= f (q (0, t)) ,

∂Tm(L, t)

∂x
= f (q (L, t)) . (2)

The linear density of sum of heat loads into the bath ∂qhl

∂x
is assumed to be constant over HB length, however its value
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changes over time and represents an important perturbation
to the system. The inverse of He II specific heat capacity
c−1
v (Tm) can be approximated in the temperature range

1.85 K < Tm < 2 K using first order polynomial. The PDE
(1) is discretized using finite volume approach.

B. Heat transfer in the superfluid helium

Heat transfer in He II is very effective at moderate
heat fluxes, however it introduces strong nonlinearities and
stiffness into the circuit dynamics [8]. In 1D, heat flux in
He II qHe

Am
is approximated using pseudo conduction therm

called Superfluid Thermal Conductivity Function F (T, p):(
qHe
Am

)3

= −F (Tm, p)
dTm
dx

. (3)

Magnets operational temperature corresponds to the maxi-
mum of super fluid conductivity F (T, p) that is approximated
with constant value F

1
3 = 2.5× 104. The resulting gradient

of internal heat flow in HB

∂qHe
∂x

= −Am
3
F

1
3

∣∣∣∣∂Tm∂x
∣∣∣∣− 2

3 ∂2Tm
∂x2

= −k∂
2Tm
∂x2

. (4)

Please notice that k, corresponding to value of local thermal
conductivity, is very high at small temperature gradients

k =
Am
3
F

1
3

∣∣∣∣∂Tm∂x
∣∣∣∣− 2

3

, lim
∂Tm
∂x →0

k =∞, (5)

resulting in very fast local temperature dynamics. Thus the
ODE set obtained after spatial discretization of PDE (1) will
be stiff if dTm

dx i
approaches zero at any of discretization

points i. The stiffness is reduced in the simplified model
using following approximation

qHe ≈ −AmF
1
3
∂Tm
∂x

((
2∆ dTm

dx

)2

+

(
∂Tm
∂x

)2
)− 1

3

. (6)

The approximation introduces temperature gradient errors
bounded by ∆ dTm

dx
, whose value has been chosen to be equal

to the measurement uncertainty. Resulting maximal value of
thermal conductivity ka has been significantly reduced:

lim
∂Tm
∂x →0

ka = AF
1
3 c−

1
3 . (7)

C. Cooling power of the BHX

Cooling power of the BHX is identical to heat flow
rate due to conduction from the HB into the BHX. It is
limited by thermal resistance of the BHX that, at cryogenic
temperatures, is dominated by Kapitza resistance. Resulting
cooling power distribution over the BHX is expressed in
terms of the Kapitza coefficient CK , temperature difference
between HB (magnets) and BHX Tm−Tbhx, Tbhx and inner
perimeter of the bayonet heat exchanger tube wetted by He II
P . Assuming that BHX temperature is equal to saturation
temperature of He II Tbhx = Ts:

∂qcool
∂x

=

{
(Tm − Ts)CKPT 3

s if Tm > Ts
0 otherwise. (8)

The value of Kapitza coefficient can be experimentally
estimated as being CK = 1200 W · K−4 · m−2[9]. Ts is
function of very low pressure in the BHX, thus changes of
pressure represent important perturbation to the circuit. In
case of two phase, stratified flow, the BHX wetted perimeter
P is related through the BHX geometry to the fraction of
BHX cross section area occupied by saturated He II ASF
as P ≈ 0.839A

1
3

SF , that is related to He II mass flow rate
W through He II density ρ = 145 kg ·m−3 and the average
velocity of the He II flow v as ASF = W

ρv .
The He II flow dynamics in the BHX has been neglected in

order to obtain computationally inexpensive approximation
of the He II mass distribution in the BHX and based on
the observation that in wide range of operational conditions,
the distribution is determined by slowly changing He II
evaporation rate. Thus the wetted BHX perimeter is related
to mass flow using v as constant parameter

P = 0.16

(
W

v

) 1
3

. (9)

Mass conservation principle for the steady flow connects the
He II mass flow rate distribution and evaporation rate density
∂Wl2v

∂x

∂W

∂x
= −∂Wl2v

∂x
= −∆−1

H

∂qcool
∂x

, W (0) = Win (10)

with the latent heat of evaporation of He II ∆H = 23.4×
103 J/kg. Please notice the strong nonlinearities in the cool-
ing power distribution, since it is available only for positive
temperature difference Tm − Ts and nonnegative mass flow
W .

III. NMPC USING C/GMRES METHOD

In this section preliminary results from application of
NMPC for the SHCC are presented. First, the NMPC setup
using C/GMRES algorithm is described. Then simulation
results are discussed and finally the observed very low
computing cost and resulting real time feasibility of the
C/GMRES algorithm are highlighted.

The notation used in this section has changed to the
standard one used in control engineering, in contrast to
physics notation used in the previous section to describe the
model. Let x(t) ∈ Rn be the state vector, and u(t) ∈ Rmu

be the input vector of a general nonlinear system. In case
of the cryogenic circuit, these correspond to discretized
HB temperature Tm and input helium mass flow rate Win
respectively.

In NMPC, also known as Receding Horizon Control
(RHC), optimal control problem is solved at each time t
over finite time horizon. At time t, only initial value of the
optimal input trajectory, corresponding to the current time t,
is used as the current input to the system, which results in
a state feedback control law. The optimal control problem is
solved over the horizon taken from the current time t to T
ahead:

minimize J = φ(x(t+T ))+

∫ t+T

t

L(x(t′), u(t′)) dt′, (11)
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subject to equality constraints corresponding to system dy-
namics

ẋ = f(x(t), u(t)) (12)

and an arbitrary mc dimensional vector-valued function

C(x(t), u(t)) = 0. (13)

Current state x(t) is used as the initial state. The problem can
be reformulated using Lagrange multipliers λ (t) and µ (t)
as

minimize J̄ = φ+

∫ t+T

t

[
L+ λT (f − ẋ) + µTC

]
dt′.

(14)
The necessary condition for an extremum of J̄ , found

based on calculus of variation, can be expressed using
Hamiltonian H = L + λT f + µTC as equations (12) and
(13) enhanced by the costate differential equation

λ̇ = −HT
x (x, u, λ, µ), λ (t+ T ) = φTx (t+ T ) (15)

and the variation

δJ̄ =

∫ t+T

t

[
Hu(x, u, λ, µ)δu(t′) + CT (x, u)δµ(t′)

]
dt′

(16)
must be zero for arbitrary δu(t) and δµ(t) [10]. Based on
the observation that x(t) and λ(t) can be integrated for given
u(t) using differential Equations (12) and (15), the remaining
unknowns are functions u(t) and µ(t).

To solve the optimal control problem numerically, we
divide the control horizon into N intervals of length ∆t = T

N
and parametrize u(t) and µ(t) using N discrete values of
u∗i (t), µ∗i (t)

u(t) =

N−1∑
i=0

σi(t)u
∗
i (t) µ(t) =

N−1∑
i=0

σi(t)µ
∗
i (t) (17)

and N basis window functions:

σi (t) =

{
1 if t+ i∆t ≤ t′ < t+ (i+ 1)∆t
0 otherwise. (18)

Now the variation

δJ̄ =

N−1∑
i=0

∫ t+(i+1)∆t

t+i∆t

[
Hudu∗i (t) + CTdµ∗i (t)

]
dt′

must be zero for arbitrary differentials du∗i and dµ∗i . Thus
the necessary condition of optimality are∫ t+(i+1)∆t

t+i∆t

Hudt′ = Hu,i = 0 for i = 0 . . . N − 1 (19)

∫ t+(i+1)∆t

t+i∆t

Cdt′ = Ci = 0 for i = 0 . . . N − 1. (20)

These can be assembled into a (mu + mc)N dimensional
nonlinear equation,

F (U(t), x(t), t) := [Hu,0 C
T
0 · · · Hu,N−1 C

T
N−1]T , (21)

using

U(t) := [u∗T0 (t) µ∗T0 (t) · · · u∗TN−1(t) µ∗TN−1(t)]T . (22)

Note that for a given sequence of discrete future inputs
{u∗i }

N−1
i=0 and Lagrange multipliers {µ∗i }

N−1
i=0 , the state tra-

jectory x(t′) over the finite horizon t < t′ < t+T is found by
integration of the ODE corresponding to system dynamics,
starting from x(t). Then the costate trajectory λ(t′) is found
by integration of λ̇ backwards from t + T back to t. Any
numerical method can be used to integrate the ODE’s. Finally
Hu(t′) and C(t′) are evaluated and the integrals Hu,i and
Ci are calculated numerically, giving the residuum of the
necessary condition of optimality F .

A. C/GMRES method

In the NMPC, at each time t, the nonlinear equation
F (U(t), x(t), t) = 0 needs to be solved with respect to U(t)
for the measured state x(t). Solving F (U) = 0 using such an
iterative algorithm as the Newton method is computationally
demanding. However, since F is solved continuously, its
solution - the optimal input trajectory U(t) - is expected
to change slowly over time as the state of the controlled
system evolves and the control horizon moves. Based on this
observation, in order to reduce the computational cost we
employ the C/GMRES algorithm to trace the time-varying
solution without any iterative searches. For comprehensive
description of C/GMRES, we refer the reader to [11].

B. Optimal control problem setup

The performance of the NMPC for a given system is
determined by the control objectives, expressed using cost
function L(x(t), u(t)), and constraints defined using function
C(x(t), u(t)). In the preliminary study, no perturbation of
the BHX pressure (saturation temperature) are considered.
In this case, the BHX temperature is always low enough
to ensure high coolant evaporation rate at optimal magnets
temperature, the setpoint xsp = 1.9 K, thus constraints
related to heat exchanger overflow and magnet maximal
temperature are unlikely to be violated. That is why the
constraint set is reduced to one inequality constraint on input
mass flow rate 0 < u(t) < umax = 10 g/s, related to
control valve capacity. This inequality constraint is expressed
as equality constraint, using dummy input variable ud:

(2u− umax)
2

+ u2
d − u2

max = 0. (23)

The goal of the control action is to stabilize the maximum
state (temperature) value at prescribed level max x(t) = xsp.
In order to approximate this objective a scalar asymmetric
quadratic cost function is evaluated for every component (x)i
of state vector x in form:

fqa((x)i, r, a) =
[((x)2

i + r2)
1
2 + a(x)i]

2 − 2ar(x)i − r2

(1 + a)2

(24)
with parameters r and a to be tuned. In order to obtain well
posed optimization problem, additional weights are used:
quadratic on system input u(t) and linear on dummy input
ud(t). The importance of weighting the dummy input is
described in [12]. The resulting performance index Eq. (11),
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has been scaled in order to reduce numerical errors in the
optimization and contains

φ = 0

L = 2× 10−4
n∑
i=1

fqa ((x)i − xsp, 0.001, 0.999)

+ 0.02 uTnun − 2× 10−7
mc∑
i=1

ud,i. (25)

C. Controller implementation and simulation setup

The NMPC simulation has been implemented in
MATLAB R© using C functions (through MEX files) to ex-
plicitly calculate Jacobians Hu and Hx. The C functions are
generated using AutoGenU: An Automatic Code Generation
System for Nonlinear Receding Horizon Control [13]. Auto-
GenU evaluates the Jacobians using symbolic mathematics
in Mathematica R© and saves them as C functions that can be
used in MATLAB R© simulations.

The numerical integrations of ODE’s corresponding to
state and costate dynamics are performed using explicit
Forward Euler method with constant integration step. The
method has been chosen because the circuit dynamics is stiff
and relatively small time steps of integration are necessary.
The maximum length of the time step assuring convergence
of the numerical integration ∆tmax has been estimated based
on eigenvalues analysis of linearized system equation f(x, u)

as ∆t < ∆tmax < c∆
2
3
dT
dx

N−2
x with Nx spatial discretization

points of the PDE describing system dynamics, temperature
gradient error introduced by stiffness reduction ∆ dT

dx
and

parameter c corresponding to circuit properties. The integral
of Hu,i and Ci is approximated using rectangle quadrature
method with one subinterval per integration interval.

In the simulation two thermally coupled Standard Cells
of the SHCC are controlled using two BHX input coolant
mass flow rates. Two inequality constraints posed on the
coolant flows need 2 dummy variables. Thus the dimensions
of corresponding input vectors are mu = 4 and mc = 2. A
single simplified model used in the controller is discretized
using 5 points. Thus, for two cells, dynamics of 10 states
and costates have to be integrated over control horizon
with maximum time step calculated ∆tmax,o = 5.54 s.
The setpoint xsp is the same for interconnected cells. The
C/GMRES needs an initial optimal trajectory to be provided
at the start of simulation. In order to facilitate the calculation
of the initial trajectory, the length of the control horizon
starts from T (0) = 0. Then it is gradually increased to its
final value limt→inf T (t) = 30 min, see Fig. 3. The control
horizon is subdivided into N = 10 equal intervals and input
value is kept constant over each interval, as explained at the
beginning of the section. The control input is recalculated
every 60 seconds of simulated time. In the simulation the
controlled circuit has been represented by different, more
precise circuit model than that used in the controller. The
model includes dynamics of saturation effects in the BHX,
uses higher discretization number, 20 points per cell, and
allows simulation of heat load perturbations effects. Heat

loads are estimated based on energy balance for a double
cell and neglecting fluid accumulation in the BHX.

D. Performance of the controller

The important, observed features of the C/GMRES method
are its low computing cost and the fact that the residuum of
the optimality condition quickly converges back to zero after
perturbing the system. The optimization problem contains
60 free variables, N(mu + mc) = 10(4 + 2) = 60, and
has to be solved every 60 seconds of the simulated time.
Less than 0.5 s are needed for computing the optimal control
trajectory on a personal computer with 2.4 GHz CPU, which
is 60/0.5 = 120 times smaller than time available for
calculation. The low computational cost of C/GMRES makes
possible further development of the controller: introduction
of remaining operational constraints related to BHX overflow
and maximal magnets temperature. The next step would be
further extension to NMPC of the SHCC over whole LHC
sector under constraints imposed by the pumping capacity
of common compressor unit and taking into account the
pressure drop in the 3.3km long helium distribution line.

In the preliminary study, NMPC action has been simulated
in presence of heat load perturbations and errors due to mod-
eling but without BHX pressure perturbations. Comparing
the NMPC simulation results, Fig. 3, with that of a PI control
in the same conditions, Fig. 2, we observe different closed
loop system dynamics. In case of NMPC, offsets between
the setpoint and maximal magnet temperature in each cell
are observed. Small, positive offset, proportional to heat
load, appears in one cell because the cost function fqa is
only an approximation of the control objective. Significant,
negative offset in the other cell is due the fact that the NMPC
tends to equally redistribute the coolant mass flow rate over
two cells, thus to reduce heat flows between them due to
thermal coupling. In contrast PI controller stabilizes at the
setpoint the maximum temperature in each cell separately
that causes increased heat flows between cells and vanishing
coolant flow in one cell. One problem that has not been
addressed relates to finite rangeability of the control valve,
which means that mass flow rate cannot be controlled in
range 0 < Win < 0.6 g/s and a cost function should be
developed to limit setting input inside of that range.

IV. CONCLUSIONS

The new simplified, first principles, distributed parameter
model of Standard Cell of the SHCC has been reviewed.
Despite of its simplicity, the model captures the most im-
portant features of nonlinear temperature dynamics of the
main superconducting magnets. These are related to physical
properties of superfluid helium and cooling power distribu-
tion of the BHX. An important operational constraint of the
circuit, heat exchanger overflow, can be estimated using the
model. Moreover, the model can be used for simulation of
interconnected Standard Cells, up to the whole sector of the
LHC.

The application of the NMPC to stabilization of the
maximal superconducting magnets temperature has been
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Fig. 2. Simulated performance of PI control applied to the SHCC. In
upper plot, four magnet temperatures correspond to maximal (solid line)
and minimal (dotted line) value in each of two interconnected Standard
Cells.

Fig. 3. Simulated performance of NMPC control applied to the SHCC. In
upper plot, four magnet temperatures correspond to maximal (solid line) and
minimal (dotted line) value in each of two interconnected Standard Cells.

studied based on the simplified model. The simulation of
NMPC using C/GMRES algorithm has been implemented
using MATLAB R© and C code. The C functions calculating
analytical Jacobians Hu and Hx are generated using Au-
toGenU. Preliminary simulation results are promising. The
very low computational cost of the NMPC online optimiza-
tion using C/GMRES solution/approximation method has
been observed, proving the real-time feasibility of the NMPC
application. However, the quadratic asymmetric cost function
used to approximate the control objective introduces offset
between setpoint and the maximal temperature and should
be improved.
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[2] O. S. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole,
and P. Proudlock, LHC Design Report. Geneva: CERN, 2004.
[Online]. Available: http://cdsweb.cern.ch/record/782076

[3] P. Lebrun, L. Serio, L. Tavian, and R. Van Weelderen, “Cooling
Strings of Superconducting Devices below 2 K: the Helium II
Bayonet Heat Exchanger,” Adv. Cryog. Eng., A, vol. 43, pp. 419–426,
Sep 1997. [Online]. Available: http://cdsweb.cern.ch/record/336315/

[4] B. Flaemster, “Investigation, Modelling and Control of the 1.9 K
Cooling Loop for Superconducting Magnets for the Large Hadron
Collider,” Ph.D. dissertation, Trondheim TU, Geneva, 2000. [Online].
Available: http://cdsweb.cern.ch/record/433397/

[5] E. Blanco, “Nonlinear Model-based Predictive Control Applied To
Large Scale Cryogenics Facilities,” Ph.D. dissertation, University of
Valladolid, 2001.

[6] E. Blanco, C. de Prada, S. Cristea, and J. Casas, “Nonlinear
predictive control in the LHC accelerator,” Control Eng. Pract.,
vol. 17, no. 10, pp. 1136 – 1147, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.conengprac.2009.04.007
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